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I. INTRODUCTION 

In medical ultrasound imaging, short pulses are emitted 

from an array of resonant elements with a center frequency 

typically in the range of 2-10 MHz.  Such two-dimensional 

(or B-mode) scans undergo two types of blur before the echo 

returns to the transducer: In the axial (longitudinal) direction 

the blur results from the envelope of the acoustic wave and 

from properties of the tissue through which the wave 

propagates; In the lateral (transverse) direction the blur is 

affected by the width and apodization of the transmission 

and reception apertures as well as the distance of the imaged 

object from the focus and medium-related distortions.  The 

model that is commonly used in ultrasound imaging research 

for the relation between the received signal and the tissue 

reflectivity is of a linear space-invariant system (LSI).  

Handling space variations of the Point Spread Function 

(PSF) is usually through partitioning the imaged plane to 

smaller regions with approximately invariant PSF. 

For more than two decades various algorithms have been 

suggested to sharpen the images, either by deconvolution 

assuming the PSF is known [1], [2], or through blind 

deconvolution [3]-[10].  The prevalent approach in blind 

deconvolution is to use the LSI method of the Wiener filter 

to recover the reflectivity image, and therefore most of the 

effort is concentrated in estimating the PSF.  It is worth 

noting that while a few algorithms used the video image as 

their input [1], [2], in most of the published work 

deconvolution is applied to the RF image [3]-[10]. 

In recent years several authors [11]-[14] developed 

algorithms for compounding of ultrasound images of the 

same region from different angles.  In parallel, researchers 

who sought ways to overcome blur phenomena of 

photographic images developed algorithms for multi-channel 

image restoration.  Ghiglia [15] presented a constrained 

least-squares algorithm for image restoration given several 

blurred images of the same object, each corresponding with 

a different PSF.  Later, Katsaggelos et al. [16] presented a 

systematic framework for performing multi-channel image 

restoration in the frequency domain.  In the field of medical 

imaging this method was applied to dual-radionuclide 

imaging [17].  Tom et al. [18] established a maximum-

likelihood formulation for the general problem of multi-

channel image restoration, and utilized the expectation-

maximization algorithm to solve it. 

To the best of our knowledge no algorithm was 

developed to exploit both deconvolution and compounding 

for ultrasound image applications.  It should be also noted 

that the above-mentioned algorithms for multi-channel 

restoration were developed for photographic images.  When 

considering these algorithms for the field of ultrasound 

images, one must note fundamental differences in several 

characteristics of the problem: the blur transfer function has 

band-pass behavior in one dimension rather than low-pass in 

both dimensions, the sampling intervals are different in each 

direction, and non-linear operations are involved in the 

display procedure. 

The research presented in this paper aims at improving 

the quality of ultrasound images through exploiting pairs of 

ultrasound scans of the same plane.  Each image pair is 

assumed to be co-registered with 90° separation between the 

two-insonification directions. 

II. MODEL OF THE PROBLEM 

A. Notation 

A 2-D spatial location in the imaging plane is denoted as 

(x, z), where x is the coordinate in the lateral direction and z 

is the coordinate in the axial direction.  In the frequency 

domain (x,z) represents the spatial frequency in radians.  

Whenever matrix representation is used the axial direction is 

column-wise unless stated otherwise.  When matrix 

coordinates appear in parentheses the first parameter 

specifies the horizontal coordinate A(m, n) = Anm in order to 

keep consistency between matrix and 2-D signal or image 

formulations. 

The matrix R indicates the unknown tissue reflectivity 

in the imaging plane.  The matrix S denotes the observed RF 

image, which is the collection of sampled signals from all 

the transducer elements during a single scan. 

B. Tissue reflectivity and degradation 

The tissue reflectivity can be considered as resulting from 

an assembly of reflectors and scatterers [7], [10].  A reflector 

is an interface, large compared with the wavelength of the 

ultrasonic pulse, while scatterers are objects, small compared 

with the wavelength and typically inducing a speckle 

pattern.  For that reason, and following [7], the tissue 

reflectivity is modeled in this work as the sum of a 

deterministic function D representing the specular reflections 

and a zero-mean Gaussian stochastic process U 

corresponding with the speckle component: 
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R(x, z) = D(x, z) + U(x, z). (1)  

The interaction of the ultrasonic pressure field with the 

tissue is 3-dimensional, but its observation in B-mode 

imaging is a 2-D space.  Subject to customary assumptions, 

the formation process of the RF image can generally be 

modeled as a 2-D spatial linear filtering operation with a 

spatially variant point-spread function [5], [6], [19], [20].  It 

is possible to segment the image into regions for which the 

PSF is approximately constant and simple convolution 

describes with good accuracy the image formation: 

S(x, z) = P(x, z)  R(x, z) + N(x, z), (2)  

where  denotes 2-D convolution, P represents the PSF and 

N represents additive noise.  The noise term is modeled as a 

white zero-mean Gaussian random process that is 

independent of the tissue reflectivity and the PSF [5]-[7]. 

The system response in the frequency domain P(x,z) 

is related to the PSF through 2-D Fourier transform.  The 

resolution in the lateral direction is significantly worse than 

the axial resolution; therefore the PSF has wide extent 

laterally and narrow support axially.  Equivalently, the 

bandwidth of the system response is much smaller in the 

lateral dimension than in the axial dimension. 

C. Rotation 

Rotation is treated as positive when its direction is from 

the positive ray of the x-axis toward the positive ray of the z-

axis, and as negative when it is in the opposite direction.  

This implies that if conventional matrix coordinates are 

employed then positive rotation is clockwise. 

Let A1 and A2 denote two RF images that were recorded 

with A2 taken after the transducer was turned by –90 

relative to its direction during the recording of A1.  The 

superscript 
rot

 is used to indicate 90 rotation, while 
inv-rot

 

indicates –90 rotation.  Assuming that the tissue reflectivity 

R is the same for both recordings, then: 

A1 = P1  R + Na 

A2 = P2  R
inv-rot

 + Nb, 

(3)  

where P1  P2 denote the system‘s PSF in each case and Na, 

Nb denote the additive noise.  Rotating A2 in (3) by 90 and 

substituting: SV  A1, SH  A2
rot

, N1  Na and N2  Nb
rot

, 

yields: 

SV = P1  R + N1 

SH = P2
rot

  R + N2. 

(4)  

In other words, the blur is treated as rotated by 90 

instead of regarding the image as rotated by –90.  Note that 

for SV the axial direction coalesces with the vertical 

direction, while for SH it is horizontal.  Therefore, according 

to the degradation model, R is more blurred horizontally to 

generate SV and more blurred vertically to generate SH. 

When dealing with matrices and discrete Fourier 

transform (DFT), rotation should be given special attention 

because straightforward 90 rotation results with phase shift 

in the frequency domain.  This is alleviated if the definition 

of 90 rotation utilizes the periodicity of the DFT: 

B(m‘, n‘)  TA = A(n‘, [N–m‘]mod N)   , 

m‘ = 0, 1 … N–1 

(5)  

where A(m, n) is a matrix with N rows.  This is equivalent to 

column-wise inversion excluding the first row followed by 

transposition. 

D. Sampling grid 

We assume that the ultrasonic B-mode scan is 

performed with a linear array transducer.  Hence, the 

sampling grid is rectangular, but the sampling intervals are 

different in each direction.  The lateral sampling interval dL 

is a consequent of the spacing between the piezoelectric 

crystals, which is in the region of few hundreds of m.  The 

axial sampling interval dA is related to the sampling 

frequency fS at the receiver and the speed of sound v within 

the tissue: 

dA = ½ v / fS. (6)  

For example, if v  1,540 m/sec and fS = 20 MHz [2]-

[4], then dA  38.5 m, and assuming dL = 500 m [1], the 

ratio between the lateral and axial sampling intervals is about 

13:1. If fS = 10.5 MHz [8] and the crystal spacing is 

approximately 200 m[12], this ratio drops off to around 

3:1. 

Taking into account the different sampling intervals and 

treating the matrices of the reflectivity R and the PSF P as 

samples on a square grid with intervals dA in both directions, 

the discrete-space LSI model for the generation of the 2 

source images SV and SH from the tissue reflectivity R is: 

SV = (P1  R) HK + N1 

SH = (P2
rot

  R) VK + N2, 

(7)  

where HK denotes horizontal decimation by factor K and 

VK stands for vertical decimation. 

E. Frequency domain 

DFT of (7) with proper zero-padding gives: 

SV(x,z) = P1(x,z) R(x,z) + N1(x,z) 

SH(x,z) = P2(z, –x) R(x,z) + N2(x,z) 

(8)  

where SV, SH, P1, P2, R, N1 and N2 are respectively the 2-

D DFT‘s of SV, SH, P1, P2, R, N1 and N2.  The zero padding 

is performed in a way such that all the elements in (8) are 

square matrices of size NDFT  NDFT. 

Using the vector notation sk,l  [SV(x,z), SH(x,z)]
T
, 

hk,l  [P1(x,z), P2(z,–x)]
T
, rk,l  R(x,z), and  
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nk,l  [N1(x,z), N2(x,z)]
T
, with x = 2πk/NDFT and z = 

2πl/NDFT, (8) can be compactly written as: 

sk,l = hk,l rk,l + nk,l  . (9)  

The variable rk,l is stochastic with mean dk,l  D(x,z) 

and variance u, and is assumed to have Gaussian probability 

density function (PDF) [7].  The noise term nk,l is a random 

vector with zero mean and a diagonal 2  2 covariance 

matrix , where the diagonal elements are the variances 1 

and 2 of N1(x,z) and N2(x,z) respectively. 

 

III. BLUR ESTIMATION 

A. The algorithm 

The blind deconvolution problem is solved in two steps: 

1. Estimation of the blur function. 

2. Image reconstruction assuming this estimated function 

is the true blur and image compounding. 

The estimation of the blur function can be viewed as an 

optimization problem where we search for the unknown 

parameters of a PDF and for which the maximum-likelihood 

(ML) approach can be applied.  Employing optimization of 

the direct likelihood function yields a difficult minimization 

problem since the unknown quantities of reflectivity and blur 

are coupled through multiplication.  The expectation-

maximization (EM) algorithm is an iterative technique that 

greatly simplifies the ML problem. 

According to the EM method, the complete data y is not 

observed directly, but only by means of the observed data s, 

which is related to y through a non-invertible linear 

mapping.  Applying to the problem at hand, we define: yk,l = 

[sk,l
T
, rk,l]

T
, so the mapping is: sk,l = [I, 0]

T
 yk,l.  The unknown 

quantity rk,l within the complete data is referred to as the 

hidden data.  The PDF of the complete data is fy(y|), where 

 is the set of unknown parameters of the PDF:  = [h
T
, d, 

u, 1, 2]
T
. 

According to the complete-probability formula: 

fy(yk,l|) = fr(rk,l|) fs(sk,l|rk,l,). (11)  

Due to the assumption that the stochastic terms are white, 

fy(y|) is the product of fy(yk,l|) over all possible 

combinations of k and l.  Hence the likelihood of the 

complete data is: 

L() = ln{fy(y|)} = ∑ ∑ Lk,l() 

Lk,l() = – 
3
/2 ln(2π) – 

1
/2 ln(u12) 

  – 
1
/2u

–1
|rk,l – dk,l|

2 

  – 
1
/2 (sk,l – hk,l rk,l)

†
 

–1
 (sk,l – hk,l rk,l). 

(11)  

In the EM algorithm each iteration is composed of two 

steps: expectation (E step) and maximization (M step).  In 

the E step the conditional expectation of ln{fy(y|)}, using 

the current estimates of the parameters 
[n]

 and conditioned 

upon the observed data, is calculated: 

Q(|
[n]

) = E[ln{ fy(y|) }|s,
[n]

]. (12)  

In the M step the expectation Q(|
[n]

) is maximized with 

respect to  to provide a new estimation of the parameters: 


[n+1]

 = arg max Q(|
[n]

). (13)  

B. Steps of the algorithm 

After (11) is substituted for fy(y|) in (12), it follows that 

maximization of Q(|
[n]

) is equivalent to minimization of: 

J(|
[n]

) = ∑ ∑ Jk,l(|
[n]

) 

Jk,l(|
[n]

) = ln(u12) + u
–1

 | E[rk,l|s,
[n]

] – dk,l |
2
 

+ (sk,l – hk,l E[rk,l|s,
[n]

])
†
 

–1
  

(sk,l – hk,l E[rk,l|s,
[n]

]) 

+ Var[rk,l|s,
[n]

] (u
–1

 + hk,l
†
 

–1
 hk,l). 

(14)  

In order to find the conditional expectation and variance 

of rk,l given s and 
[n]

, we need to look at the conditional 

probability density.  Using the complete-probability formula 

fr(rk,l | s,
[n]

) = fy(yk,l | 
[n]

) / fs(sk,l | 
[n]

), it follows: 

E[rk,l|s,
[n]

] = [1
–1 P1(x,z)

 SV(x,z) + 

 2
–1 P2(z, –x)

 SH(x,z) + u
–1

 dk,l] / 

[1
–1 |P1(x,z)|

2 + 2
–1 |P2(z,–x)|

2
 + u

–1
]. 

(15)  

Var[rk,l|s,
[n]

] = 1/ 

[1
–1 |P1(x,z)|

2 + 2
–1 |P2(z,–x)|

2
 + u

–1
]. 

(16)  

Note the expression in (15) is similar to the vector Wiener 

filter [16].  For each of the parameters in (15) and (16) the 

current estimation is substituted, though the superscript 
[n]

 is 

suppressed for brevity. 

Now, we take from (14) only the terms that involve hk,l 

and use the identity (v
†
 A w) = tr(A w v

†
), where A is a 

matrix of size N  N, v, w are vectors of size N  1 and 

tr{A} denotes the trace of A: 

Jh(|
[n]

) = ∑ ∑ tr{
–1

 (Var[rk,l|s,
[n]

] hk,l hk,l
†
 + 

 (sk,l – hk,l E[rk,l|s,
[n]

]) (sk,l – hk,l E[rk,l|s,
[n]

])
†
)}. 

(17)  

Since  is a diagonal matrix, we obtain from the 

expression in (17): 

hk,l
[n+1]

 = E[rk,l|s,
[n]

]

sk,l / 

(|E[rk,l|s,
[n]

]|
2
 + Var[rk,l|s,

[n]
]). 

(18)  

Explicitly, the update of the estimation of the blur is: 

P1(x,z)
[n+1]

   = E[rk,l|s,
[n]

]
 SV(x,z) / (19)  

 

k l 

k l 

k l 
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E[|rk,l|
2
|s,

[n]
] 

P2(z,–x)
[n+1]

 = E[rk,l|s,
[n]

]
 SH(x,z) / 

E[|rk,l|
2
|s,

[n]
] 

where we used for E[|rk,l|
2
|s,

[n]
] the identity: 

E[|rk,l|
2
|s,

[n]
] = | E[rk,l|s,

[n]
] |

2
 + Var[rk,l|s,

[n]
]. (21)  

Next, we take from (14) only terms related to : 

J(|
[n]

) = ∑ ∑ ln(12) + Jh(|
[n]

) (21)  

Substituting (18) for hk,l, the values of 1 and 2 that 

minimize (21) are: 

1
[n+1]

 = NDFT
–2

 ∑ ∑{Var[rk,l|s,
[n]

] |P(x,z)
[n+1]

|
2
 

+ |SV(x,z) – E[rk,l|s,
[n]

] P(x,z)
[n+1]

|
2
} 

2
[n+1]

 = NDFT
–2

 ∑ ∑{Var[rk,l|s,
[n]

] |P(z,–x)
[n+1]

|
2
 

+ |SH(x,z) – E[rk,l|s,
[n]

] P(z, –x)
[n+1]

|
2
}. 

(22)  

Then, for the minimization J(|
[n]

) with respect to dk,l, 

we take from (14) only the terms that depend on dk,l: 

Jd(|
[n]

) = u
–1

 | E[rk,l|s,
[n]

] – dk,l |
2
 (23)  

It is simple to see that the value of dk,l that minimizes (23) is: 

dk,l
[n+1]

 = E[rk,l|s,
[n]

] (24)  

Finally, we substitute (24) for dk,l in (14) then take only 

the terms that depend on u: 

Ju(|
[n]

) = ∑ ∑ (ln(u) + u
–1

 Var[rk,l|s,
[n]

]). (25)  

The minimum of (25) is achieved when the value of u is: 

u
[n+1]

 = NDFT
–2

 ∑ ∑ Var[rk,l|s,
[n]

]. (26)  

If we assume that the noise variance is the same in both 

RF images, then the average of the 2 expressions in (22) 

should be used to update the variance.  If we assume 

identical blur in both scans P1 = P2 = P, (19) should be 

replaced with: 

P(z,x)
[n+1]

 = ( E[rk,l|s,
[n]

]
 SV(x,z) + 

     E[r–l,k|s,
[n]

]
 SH(–z,x) ) 

(27)  

/ (E[|rk,l|
2
|s,

[n]
] + E[|r– l,k|

2
|s,

[n]
]) 

C. Initialization and constraints 

Being highly non-linear the likelihood function L() has 

multiple maxima, and therefore the initial conditions 
[0]

 

have a great effect on the ability of the EM algorithm to 

converge to a good estimation.  We found that P1
[0]

 and P2
[0]

 

should have the same value at all frequencies, that is they 

should be the DFT of an impulse at the origin.  Also, a 

plausible initialization for d
[0]

 is the average of SV and SH.  

For the noise variance the initial estimate was higher than 

the true value, as it was found in [18] to produce better 

results.  In the initial iterations the estimation of the 

variances is unreliable, thus the estimation much improves if 

u in (15) and (16) is limited such that 1/u and  2/u are 

not too large or small relatively to max|P1(x,z)|
2
 and 

max|P2(x,z)|
2
 respectively. 

IV. IMAGE COMPUNDING 

According to the approach of multi-channel image 

restoration the restored image is computed from (15).  

However, in ultrasound imaging the resulting image would 

contain oscillations, as is the case with RF images due to the 

band-pass character of the ultrasonic blur.  Consequently 

there would be required envelope detection. 

When handling single RF images, where the oscillations 

are along just one axis, the envelope can be detected through 

demodulation, followed by absolute value calculation.  But, 

the image of (15) has oscillations along both axes, thus 

demodulation or Hilbert filtered cannot be utilized.  In 

addition, the frequency support regions of P1(x,z) and 

P2(z,–x) are far from overlapping.  This inhibits the 

benefit of (15) over a single-channel Wiener filter, which is 

the ability to get weighted average in the intersection of the 

support regions while retaining the best of the single-channel 

restorations at any other frequency. 

The conclusion is that the compound image should be 

generated through the following steps: 

1. Calculation of the 2 separate Wiener filter solutions 

using (15) and substituting 0 for 1
–1

 or 2
–1

 

respectively. 

2. Envelope detection of each resulting image. 

3. Computation of the average of the 2 envelope detected 

images [11], [12]. 

V. EXPERIMENTAL RESULTS 

Since the estimation of the blur can be accurate up to a 

gain factor, it is required to restore the scaling before 

comparing the estimation with the true blur.  We used the 

least squares method for this purpose: 

Jg = ||g P̂  – P||
2
. (28)  

We used normalized mean squared error (NMSE) as a 

quality metric to evaluate the PSF estimation.  The MSE is 

the right-hand side of (28) and the normalization is with 

respect to ||P||
2
.  When substituting for g the value that 

minimizes (28) the quality measure becomes: 

NMSE{P} = 1 – Re(P̂
† P)

2
 / (||P̂ ||

2
 ||P||

2
) (29)  

k l 

k l 

k l 

k l 

k l 
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a) 

 
b) 

Figure 1. The output: compound images. a)– with the proposed algorithm; 

b)– with averaging the 2 envelope-detected images 

We tested the algorithm with several artificial reflectivity 

maps.  Their size was 512  512 pixels, which corresponds 

approximately with 20  20 mm for a sampling interval of 

about 40 m.  In the example that is presented in this paper 

there are 4 series of bright dots simulating wire targets that 

are separated by 0.5, 1, 2 and 3 mm. 

The blur in the example in this paper was according to the 

non-separable model that was given in [20].  The parameters 

for this blur function corresponded with a linear-array 

transducer having width of 25 mm without apodization and 

focus depth of 50 mm, using 4 MHz ultrasonic pulses with 

envelope having full width at half maximum (FWHM) of 

about 0.3 sec. Compounding with the suggested algorithm 

is compared in Figure 1 to compounding with only 

averaging the envelope-detected and log-compressed 

images. 

VI. CONCLUSIONS 

We developed an algorithm for blind identification of 

ultrasonic blur and for ultrasound image compounding.  The 

approach of multi-channel image restoration was adopted for 

the identification task, but Wiener restoration was found to 

be inappropriate for compounding in the case of ultrasound 

imaging with 90 separated views.  The algorithm in this 

work is based on registration of the two input images, and 

exploits both deconvolution and compounding to provide an 

enhanced output image.  The simulation experiments that we 

conducted show that the quality of the compound image can 

be enhanced compared to the usage of algebraic average 

without Wiener filtering.  Further research is planned so as 

to adapt the algorithm for angles different than 90 and for 

multi-angle compounding [21]. 
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